University of Pittsburgh

Doing More with Less: Student Modeling and Performance Prediction with Reduced Content Models

ISP Graduate Student
Friday, October 31, 2014 - 12:30pm - 1:00pm

When modeling student knowledge and predicting student performance, adaptive educational systems frequently rely on content models that connect learning content (i.e., problems) with its underlying domain knowledge (i.e., knowledge components, KCs) required to complete it. In some domains, such as programming, the number of KCs associated with advanced learning contents is quite large. It complicates modeling due to increasing noise and decreases efficiency. We argue that the efficiency of modeling and prediction in such domains could be improved without the loss of quality by reducing problems content models to a subset of most important KCs. To prove this hypothesis, we evalu- ate several KC reduction methods varying reduction size by assessing the prediction performance of Knowledge Tracing and Performance Factor Analysis. The results show that the predictive performance using reduced content models can be significantly better than using original one, with extra benefits of reducing time and space.

Copyright 2009–2019 | Send feedback about this site