University of Pittsburgh

Unifying Logical and Statistical AI

Friday, October 30, 2015 - 12:30pm - 1:30pm

Intelligent agents must be able to handle the complexity and uncertainty of the real world. Logical AI has focused mainly on the former, and statistical AI on the latter. Markov logic combines the two by attaching weights to first-order formulas and viewing them as templates for features of Markov networks. Inference algorithms for Markov logic draw on ideas from satisfiability, Markov chain Monte Carlo and knowledge-based model construction. Learning algorithms are based on the voted perceptron, pseudo-likelihood and inductive logic programming. Markov logic has been successfully applied to a wide variety of problems in natural language understanding, vision, computational biology, social networks and others, and is the basis of the open-source Alchemy system.

Bio information:

Pedro Domingos is a professor of computer science at the University of Washington in Seattle. He is a winner of the SIGKDD Innovation Award, the highest honor in data science. He is a Fellow of
the Association for the Advancement of Artificial Intelligence, and has received a Fulbright Scholarship, a Sloan Fellowship, the National Science Foundation’s CAREER Award, and numerous best paper awards. He received his Ph.D. from the University of California at Irvine and is the author or co-author of over 200 technical publications. He has held visiting positions at Stanford, Carnegie Mellon, and MIT. He co-founded the International Machine Learning Society in 2001. His research spans a wide variety of topics in machine learning, artificial intelligence, and data science, including scaling learning algorithms to big data, maximizing word of mouth in social networks, unifying logic and probability, and deep learning.

Copyright 2009 | Web site by UMC Web Team